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Abstract1 
With the growing needs of data intensive science, 
such as High Energy Physics, and the need to share 
data between multiple remote computer and data 
centers worldwide, the necessity for high network 
performance to replicate large volumes (TBytes) of 
data between remote sites in Europe, Japan and the 
U.S. is imperative. Currently, most production bulk-
data replication on the network utilizes multiple 
parallel standard (Reno based) TCP streams. 
Optimizing the window sizes and number of parallel 
stream is time consuming, complex, and varies (in 
some cases hour by hour) depending on network 
configurations and loads. We therefore evaluated 
new advanced TCP stacks that do not require 
multiple parallel streams while giving good 
performances on high speed long-distance network 
paths. In this paper, we report measurements made 
on real production networks with various TCP 
implementations on paths with different Round Trip 
Times (RTT) using both optimal and sub-optimal 
window sizes.  
 
We compared the New Reno TCP with the 
following stacks: HS-TCP, Fast TCP, S-TCP, 
HSTCP-LP, H-TCP and Bic-TCP. The analysis will 
compare and report on the stacks in terms of 
achievable throughput, impact on RTT, intra- and 
inter-protocol fairness, stability, as well as the 
impact of reverse traffic. 
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under Contract No. DE-AC03-76SF00515. 

We also report on some tentative results from tests 
made on unloaded 10Gbps paths during 
SuperComputing 2003. 

1 Introduction  
With the huge amounts of data gathered in fields 
such as High Energy and Nuclear Physics (HENP), 
Astronomy, Bioinformatics, Earth Sciences, and 
Fusion, scientists are facing unprecedented 
challenges in managing, processing, analyzing and 
transferring the data between major sites like major 
research sites in Europe and North America that are 
separated by long distances. Fortunately, the rapid 
evolution of high-speed networks is enabling the 
development of data-grids and super-computing 
that, in turn, enable sharing vast amounts of data 
and computing power. Tools built on TCP, such as 
bbcp [11], bbftp [4] and GridFTP [1] are 
increasingly being used by applications that need to 
move large amounts of data. 
 
The standard TCP (Transmission Control Protocol) 
has performed remarkably well and is generally 
known for having prevented severe congestion as 
the Internet scaled up. It is well-known that the 
current version of TCP - which relies on the Reno 
congestion avoidance algorithm to measure the 
capacity of a network - is not appropriate for high 
speed long-distance networks. The need to 
acknowledge packets sets a limit for the throughput 
for Reno TCP to be a function of 1/RTT where 
RTT is the Round Trip Time. For example, with 
1500-Byte packets and a 100ms RTT, it would 
require an average congestion window of 83,333 
segments and a packet drop rate of at most one 
congestion event every 5,000,000,000 packets to 
achieve a steady-state throughput of 10Gbps (or 
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equivalently, at most one congestion event every 
100 minutes)[8]. This loss rate is typically below 
what is possible today with optical fibers.  
 
Today the major approach to improve the 
performance of TCP is that of adjusting the TCP 
window size to the bandwidth (or more accurately 
the bitrate) * delay (RTT) product (BDP) of the 
network path, and using parallel TCP streams.  
 
In this paper, we will analyze the performance and 
the fairness of various new TCP stacks. We ran tests 
in 3 network configurations: short distance, middle 
distance and long distance. With these different 
network conditions, our goal is to find a protocol 
that is easy to configure, that provides optimum 
throughput, that is network friendly to other users, 
and that is responsive to changes in available 
bitrates. We tested 7 different TCP stacks (see 
section 2 for a brief description of each): P-TCP, S-
TCP, Fast TCP, HS-TCP, HSTCP-LP, H-TCP and 
Bic-TCP. The main aim of this paper is to compare 
and validate how well the various TCPs work in real 
high-speed production networks.  
 
Section 2 describes the specifications of each 
advanced protocol we tested. Section 3 explains 
how we made the measurements. Section 4 shows 
how each protocol: affects the RTT and CPU loads, 
and behaves with respect to the txqueuelen  (the 
number of packets queued up by the IP layer for the 
Network Interface Card (NIC)). This section also 
shows: how much throughput each protocol can 
achieve; how responsive is each protocol in the face 
of “stiff”  sinusoidally varying UDP traffic; and the 
stability of each protocol. Section 5 moves on to 
consider the effects of cross-traffic on each 
protocol. We consider both cross-traffic from the 
same protocol (intra-protocol) and a different 
protocol (inter-protocol). We also look at the effects 
of the reverse traffic on the protocols. Section 6 
reports on some tentative results from tests made 
during SuperComputing 20003 (SC03). Section 7 
talks about possible future measurements and 
section 8 provides the conclusion.  

2 The advanced stacks 
We selected the following TCP stacks according to 
two criteria in order to achieve high throughput on 
long distance:  

Software change Since most data-
intensive science sites such as SLAC are 
end-users of networks - with no control 
over the routers or infrastructure of the 
wide area network - we required that any 

changes needed would only apply to the 
end-hosts. Thus, for standard production 
networks, protocols like XCP [15] (router 
assisted protocol) or Jumbo Frame (e.g. 
MTU=9000) are excluded. Furthermore, 
since SLAC is a major generator and 
distributor of data, we wanted a solution 
that only required changes to the sender 
end of a transfer. Consequently we 
eliminated protocols like Dynamic Right 
Sizing [5], which required a modification 
on the receiver’s side.  
 
TCP improvement Given the existing 
software infrastructure based on file 
transfer applications such as bbftp, bbcp 
and GridFTP that are based on TCP, and 
TCP’s success in scaling up to the Gbps 
range [6], we restricted our evaluations to 
implementations of the TCP protocol. Rate 
based protocols like SABUL [9] and 
Tsunami [21] or storage based protocols 
such as iSCSI or Fiber Channel over IP are 
currently out of scope.  
 

We call advanced stacks the set of protocols 
presented below, except the first (TCP Reno). All of 
these stacks are improvements of TCP Reno apart 
from Fast TCP that is an evolution from TCP 
Vegas. All the stacks only require to be used on the 
sender’s side. Further all the advanced stacks run on 
GNU/Linux. 

2.1 Reno TCP 
TCP’s congestion management is composed of two 
major algorithms: the slow-start and congestion 
avoidance algorithms which allow TCP to increase 
the data transmission rate without overwhelming the 
network. Standard TCP cannot inject more than 
cwnd (congestion window) segments of 
unacknowledged data into the network. TCP Reno’s 
congestion avoidance mechanism is referred to as 
AIMD (Additive Increase Multiplicative Decrease). 
In the congestion avoidance phase TCP Reno 
increases cwnd by one packet per packet of data 
acknowledged and halves cwnd for every window 
of data containing a packet drop. Hence the 
following equations: 
 
Slow-Start 
 

 c  old  new :ACK cwndcwnd +=       (1) 
 
 
 



 3 

Congestion Avoidance 
 

 
old

a 
old  new :ACK 

cwnd
cwndcwnd +=      (2) 

 

cwndcwndcwnd old bold  new : DROP *−=      (3) 
 
Where a = 1, b = 0.5, c = 1. 

2.2 P-TCP 
After tests with varying maximum window sizes 
and numbers of streams, from SLAC to many sites, 
we observed that using the TCP Reno protocol with 
16 streams and an appropriate window size 
(typically the number of streams * window size ~ 
BDP) was a reasonable compromise for medium 
and long network distance paths. Since today 
physicists are typically using TCP Reno with 
multiple parallel streams to achieve high 
throughputs, we use this number of streams as a 
base for the comparisons with other protocols. 
However: 

• It may be over-aggressive and unfair 
• The optimum number of parallel streams 

can vary significantly with changes (e,g, 
routes) or utilization of the networks.  

 
To be effective for high performance throughput, 
the best new advanced protocols, while using a 
single stream, need to provide similar performance 
to P-TCP (parallel TCP Reno) and in addition, they 
should have better fairness than P-TCP.  
 
For this implementation, we used the latest 
GNU/Linux kernel available (2.4.22) which 
includes SACK and New Reno. This 
implementation still has the AIMD mechanism 
shown in (2) and (3). 

2.3 S-TCP 
Scalable TCP changes the traditional TCP Reno 
congestion control algorithm: instead of using 
Additive Increase, the increase is exponential and 
the Multiplicative Decrease factor b is set to 0.125. 
It was described by Tom Kelly in [16]. 

2.4 Fast TCP 
The Fast TCP protocol is the only protocol which is 
based on Vegas TCP instead of Reno TCP. It uses 
both queuing delay and packet loss as congestion 
measures. It was introduced by Steven Low and his 
group at Caltech in [14] and demonstrated during 
SC2002 [13]. It reduces massive losses using pacing 

at sender and converges rapidly to an equilibrium 
value. 

2.5 HS-TCP 
The HighSpeed TCP was introduced by Sally Floyd 
in [7] and [8] as a modification of TCP’s congestion 
control mechanism to improve the performance of 
TCP in fast, long delay networks. This modification 
is designed to behave like Reno for small values of 
cwnd, but above a chosen value of cwnd a more 
aggressive response function is used. When cwnd is 
large (greater than 38 packets), the modification 
uses a table to indicate by how much the congestion 
window should be increased when an ACK is 
received, and it releases less network bandwidth 
than 1/2 cwnd on packet loss. We were aware of 
two versions of High-Speed TCP: Li [18] and 
Dunigan [3]. Apart from the SC03 measurements, 
we chose to test the stack developed by Tom 
Dunigan which was included in the Web1002

 patch. 

2.6 HSTCP-LP 
The aim of this modification, that is based on TCP-
LP [17], is to utilize only the excess network 
bandwidth left unused by other flows. By giving a 
strict higher priority to all non-HSTCP-LP cross-
traffic flows, the modification enables a simple two-
class prioritization without any support from the 
network. HSTCP-LP was implemented by merging 
together HS-TCP and TCP-LP. 

2.7 H-TCP 
This modification has a similar approach to High- 
Speed TCP since H-TCP switches to the advanced 
mode after it has reached a threshold. Instead of 
using a table like HS-TCP, H-TCP uses an 
heterogeneous AIMD algorithm described in [24].  

2.8 Bic-TCP 
In [26], the authors introduce a new protocol whose 
objective is to correct the RTT unfairness of 
Scalable TCP and HS-TCP. The protocol uses an 
additive increase and a binary search increase. 
When the congestion window is large, additive 
increase with a large increment ensures linear RTT 
fairness as well as good scalability. Under small 
congestion windows, binary search increase is 
designed to provide TCP friendliness. 
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2.9 Westwood+ TCP 
This protocol continuously estimates the packet rate 
of the connection by monitoring the ACK reception 
rate. The estimated connection rate is then used to 
compute congestion window and slow start 
threshold settings after a timeout or three duplicate 
ACKs. This protocol was described in [20]. 

2.10 GridDT 
This protocol allows the users to tune AIMD 
parameters which can reproduce the behavior of a 
multi-stream transfer with a single stream and can 
virtually increase the MTU as described in [22]. 
Due to some time delay in the kernel availability, 
we were unable to test Westwood+ TCP and 
GridDT. We hope to test and report on them in a 
future paper. 

3 Measurements 
Each test was run for 20 minutes from SLAC to 
three different networks: Caltech for short-distance 
(RTT of 10 ms), University of Florida for middle 
distance (RTT of 70 ms) and University of 
Manchester for long-distance (RTT of 170 ms). We 
duplicated some tests to DataTAG3

 Chicago (RTT 
of 70 ms) and DataTAG CERN (RTT of 170 ms) in 
order to see if our tests were coherent.  
 
The throughputs on these production links go from 
400 Mbps to 600 Mbps which was the maximum we 
could reach because of the OC12 (622 Mbps) links 
to ESnet and CENIC at SLAC. The route for 
Caltech uses CENIC from SLAC to Caltech and the 
bottleneck capacity for most of the tests was 622 
Mbps. The route used for University of Florida 
(UFL) was CENIC and Abilene and the bottleneck 
capacity was 467 Mbps at UFL. The route to CERN 
was via ESnet and Starlight and the bottleneck 
capacity was 622 Mbps at SLAC. The route used 
for University of Manchester is ESnet then Geant 
and JANET.  
 
At the sender side, we used three machines:  
Machine 1 runs ping. 
Machine 2 runs Advanced TCP. 
Machine 3 runs Advanced TCP for cross-traffic or 
UDP traffic. 
 
Machines 2 and 3 had 3.06GHz dual-processor 
Xeons with 1 GB of memory, a 533MHz front side 
bus and an Intel Gigabit Ethernet (GE) interface. 

                                                           
3 Research & Technological Development for a  
TransAtlantic Grid: http://datatag.web.cern.ch/datatag/ 

Due to difficulties concerning the availability of 
hosts at the receiving sites, we usually used only 
two servers on the receiver’s side (Machines 1 and 
2 at the sender side send data to the same machine 
at the receiver side). 
 
After various tests, we decided to run ping and 
iperf in separate machines. With this configuration 
we had no packet loss for ping during the tests. 
 
We used a modified version of iperf4

 in order to 
test the advanced protocol in a heterogeneous 
environment. Following an idea described by 
Hacker [10], we modified iperf to be able to send 
UDP traffic with a sinusoidal variation of the 
throughput. We used this to see how well each 
advanced TCP stack was able to adjust to the 
varying “stiff”  UDP traffic. The amplitude of the 
UDP stream varied from 5% to 20% of the 
bandwidth with periods of 60 seconds and 30 
seconds. Both the amplitude and period could be 
specified.  
 
We ran iperf (TCP and UDP flows) with a report 
interval of 5 seconds. For the ICMP traffic the 
interval, that was used by the traditional ping 
program, is of the same order as the RTT in order to 
gain some granularity in the results. The tests were 
run mostly during the weekend and the night in 
order to reduce the impact on other traffic.  
 
On the sender’s side, we used the different kernels 
patched for the advanced TCP stacks. The different 
kernels are based on vanilla GNU/Linux 2.4.19 
 through GNU/Linux 2.4.22. The TCP source code 
of the vanilla kernels is nearly identical. On the 
receiver’s side we used a standard Linux kernel 
without any patch in the TCP stack.  
 
For each test we computed different values: 
throughput average and standard deviation, RTT 
average and standard deviation, stability and 
fairness index. The stability index helps us find out 
how the advanced stack evolves in a network with 
rapidly varying available bandwidth.  
 
With iperf, we can specify the maximum window 
size the congestion window can reach. The optimal 
window sizes according the bandwidth delay 
product are about 500KBytes for the short distance 
path, about 3.5MBytes for the medium distance path 
and about 10MBytes for the long distance path. We 
used 3 main window sizes for each path in order to 
try and bracket the optimum in each case: for the 

                                                           
4 http://dast.nlanr.net/Projects/Iperf/   
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short-distance we used 256KBytes, 512KBytes and 
1024KBytes; for the middle distance we used 

1MBytes, 4MBytes and 8MBytes; and for the long-
distance we used 4MByte, 8MByte and 12MByte

 
 TCP 

Reno 
P-TCP S-TCP Fast TCP HS-TCP Bic-TCP H TCP HSTCP-LP 

Caltech 256KB 238+-15 395+-33 226+-14 233+-13 225+-17 238+-16 233+-25 236+-18 
Caltech 512KB 361+-44 412+-18 378+-41 409+-27 307+-31 372+-35 338+-48 374+-51 
Caltech 1MB 374+-53 434+-17 429+-58 413+-58 284+-37 382+-41 373+-34 381+-51 
UFL 1MB 129+-26 451+-32 109+-18 136+-12 136+-15 134+-13 140+-14 141+-18 
UFL 4MB 294+-110 428+-71 300+-108 339+-101 431+-91 387+-52 348+-76 382+-120 
UFL 8MB 274+-115 441+-52 281+-117 348+-96 387+-95 404+-34 351+-56 356+-118 
Manchester 4MB 97+-38 268+-94 170+-20 163+-33 171+-15 165+-26 172+-13 87+-61 
Manchester 8MB 78+-41 232+-74 320+-65 282+-113 330+-52 277+-92 323+-64 118+-111 
Manchester 12MB 182+-66 212+-83 459+-71 262+-195 368+-161 416+-100 439+-129 94+-113 
Avg. thru Size 1 154 371 178 177 177 179 185 155 
Avg. thru Size 2 244 357 384 343 356 345 336 292 
Avg. thru Size 3 277 362 422 341 346 367 388 277 
Avg. thru size 2 & 3 261 360 403 342 351 356 362 294 
Std. dev. size 2 & 3 113 107 49 53 54 49 41 125 

 
Table 1: Iperf TCP throughputs for various TCP stacks for different window sizes, averaged over the three 
different network path lengths. 
 
maximum windows. In this paper, we refer to these 
three different window sizes for each distance as: 
size 1, 2 and 3. 

4 Results 
In this section, we present the essential points and 
the analysis of our results. The whole data are 
available on our website5. 

4.1 RTT 
All advanced TCP stacks are “ fair”  with respect to 
the RTT (i.e. do not dramatically increase RTT) 
except for P-TCP Reno. On the short distance, the 
RTT of P-TCP Reno increases from 10 ms to 200 
ms. On the medium and long distances, the 
variation is much less noticeable and the difference 
in the average RTTs between the stacks is typically 
less than 10ms.  
 
For the other advanced stacks the RTT remains the 
same except with the biggest window size we 
noticed, in general, a small increase of the RTT. 

4.2 CPU load 
We ran our tests with the time command in order to 
see how each protocol used the cpu resource of the 
machine on the sender’s side. The MHz/Mbps 
utilization averaged over all stacks, for all distances 
and all windows was 0.93+-0.08 MHz/Mbps. The 
MHz/Mbps averaged over all distances and window 
sizes varied from 0.8+-0.35 for S-TCP to 1.0+-0.2 

                                                           
5 http://www-iepm.slac.stanford.edu/bw/tcp-eval/  

for Fast. We observed no significant difference in 
sender side CPU load between the various 
protocols.  

4.3 txqueuelen 
In the GNU/Linux 2.4 kernel, the txqueuelen 
enables us to regulate the size of the queue between 
the kernel and the Ethernet layer. It is well-known 
that the size of the txqueuelen for the NIC can 
change the throughput but we have to use some 
optimal tuning. Some previous tests [19] were made 
by Li. Although use of a large txqueuelen can 
result in a large increase of the throughput with TCP 
flows and a decrease of sendstall, Li observed an 
increase of duplicate ACKs.  
 
Scalable TCP by default used a txqueuelen of 2000 
but all the others use 100. Thus, we tested the 
various protocols with txqueuelen sizes of 100, 
2000 and 10000 in order to see how this parameter 
could change the throughput. In general, the 
advanced TCPs perform better with a txqueuelen 
of 100 except for S-TCP which performs better with 
2000. With the largest txqueuelen, we observe 
more instability in the throughput.  

4.4 Throughput 
Table 1 and Figure 1 show the iperf TCP 
throughputs averaged over all the 5 seconds 
intervals for each 1200 second measurement 
(henceforth referred to as the 1200 second average) 
for the various stacks, network distances and 
window sizes. Also shown are the averages of the 
1200 second averages for the three network 
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distances for each window size. Since the smallest 
window sizes were unable to achieve the optimal 
throughputs, we also provide the averages of the 
1200 second averages for sizes 2 and 3. 
 

 
Figure 1: Average of the 1200 second averages for 
maximum window sizes 2 and 3 shown for three 
network distances and various TCP stacks. The y 
axis is the throughput achieved in Mbps. 
 
 

• With the smallest maximum window sizes 
(size 1) we were unable to achieve optimal 
throughputs except when using P-TCP. 

• Depending on the paths, we could achieve 
throughputs varying from 300 to 500 
Mbps. 

• There are more differences in the protocol 
achievable throughputs for the longer 
distances. 

• For the long distance (Manchester), the 
BDP predicts an optimum window size 
closer to 12MBytes than 8Mbytes. As a 
result S-TCP, H-TCP, Bic-TCP and HS-
TCP perform best for the Manchester path 
with the 12MByte maximum window size. 

• The top throughput performer for window 
sizes 2 and 3 was Scalable-TCP, followed 
by (roughly equal) Bic-TCP, Fast TCP, H-
TCP, P-TCP and HS-TCP, with HSTCP-
LP and Reno single stream bringing up the 
rear.  

• The poor performance of Reno single 
stream is to be expected due to its AIMD 
congestion avoidance behavior. 

• Since HSTCP-LP deliberately backs off 
early to provide a lower priority, it is not 
unexpected that it will perform less well 
than other more aggressive protocols. 

• P-TCP performs well at the short and 
medium distances, but less well on the 
long-distance path, possibly since the 
windows*streams product was >> the 
BDP.  

 
It needs to be noted that the standard deviations of 
these averages are sufficiently large that the 
ordering should only be regarded as a general 
guideline.  

4.5 Sinusoidal UDP 
The throughput of a protocol is not sufficient to 
describe its performance. Thus, we analyzed how 
the protocol behaves when competing with a UDP 
stream varying in a sinusoidal manner. The purpose 
of this stream is to emulate the variable behavior of 
the background cross-traffic. Our results show that 
in general, all protocols converge quickly to follow 
the changes in the available bandwidth and maintain 
a roughly constant aggregate throughput - especially 
for Bic-TCP. Fast TCP, and P-TCP to a lesser 
extent have, some stability problems on long-
distance and become unstable with the largest 
window size. Figure 2 shows an example of the 
variation of Bic-TCP in the presence of sinusoidal 
UDP traffic.  
 

 
Figure 2: Bic-TCP with sinusoidal UDP traffic. 

4.6 Stability 
We compute the stability index as the standard 
deviation normalized by the average throughput. If 
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we have few oscillations in the throughput, we will 
have a stability index close to zero.  
 
Without the UDP cross-traffic, all stacks have better 
stability indices (factor of 1.5 to 4 times better) with 
the smallest window sizes. S-TCP has the best 
stability (index ~ 0.1) for the optimal and larger 
than optimal window sizes, this is followed closely 
by H-TCP, Bic-TCP and HS-TCP. Single stream 
Reno and HSTCP-LP have poorer stabilities (> 0.3). 

 
Figure 3: Stability index averaged over the optimal 
and largest window sizes and the 3 different 
network path lengths.  
 
With the sinusoidal UDP traffic, better stability is 
achieved once again with the smallest window 
sizes. For the other window sizes there is little 
difference (0.01) between the two UDP-frequency 
stabilities for a given stack. The throughputs with 
the UDP cross-traffic are generally larger (15%) 
than those without the UDP cross-traffic. Bic-TCP 
closely followed by the two more aggressive 
protocols, P-TCP and Scalable-TCP, have the best 
stability indices (< 0.2). H-TCP and HS-TCP have 
stability indices typically > 0.2 and Fast TCP and 
HSTCP-LP have stability indices > 0.3. We noticed 
that, in general, the protocols are more stable with 
the largest window (size 3) than with the optimal 
window (size 2). 

5 Cross-traffic 

5.1 Intra-protocol fairness 
The cross-traffic tests are important and help us to 
understand how fair a protocol is. At our research 
centers, we wanted to know not only the fairness of 
each advanced protocol against TCP Reno, but also 
how fairly the protocols behave towards each other. 
It is important to see how the different protocols 
compete with one another since the protocol that 

our research centers will adopt shortly must coexist 
harmoniously with existing protocols and with 
advanced protocols chosen by other sites. Of course, 
we cannot avoid a future protocol being unfair only 
with our chosen one. In this paper we consider a fair 
share per link metric. If there are n f lows through a 
bottleneck link, each flow will take 1/n of the 
capacity of the bottleneck link. We measure the 
average bandwidth xi of each source i during the test 
then we compute the fairness index as described in 
[2] by Jain et al.: 
 

A fairness index of 1 corresponds to a perfect 
allocation of the throughput between all protocols.  
 
There are other definitions of the concept of 
fairness. For example, in [25] the authors describe 
and extend the concept of “Fa fairness” . However, 
we chose to use the definitions of Chiu and Jain 
which are the ones mainly used in the networking 
literature concerning a simple model of a single 
bottleneck.  
 
The intra-protocol fairness is the fairness between 
two flows of the same protocol. Each flow is sent 
from a different sending host to a different receiving 
host.  
 
In general, all the protocols have a good intra-
fairness (F � 0.98) except HS-TCP (F � 0.94) on 
the middle distance, and P-TCP, H-TCP and 
HSTCP-LP on the long-distance with window sizes 
greater than the optimal. We noticed that on the 
middle distance, the two HS-TCP flows will switch 
with one another instead of maintaining a constant 
share of the bandwidth. The first f low will decrease 
after a certain time and leave the available 
bandwidth to the second flow. As a result, we 
observe a large instability in these HS-TCP flows. 
We do not notice this HS-TCP behavior on the 
short-distance path. 

5.2 Inter-protocol fairness 
For the inter-protocol fairness we sent two different 
flows on the link from two different machines. The 
aim of this experience was to see how each protocol 
behaves with a competing protocol. We desired that 
the protocol would neither be too aggressive nor too 
gentle (non-aggressive) towards the other protocols. 
The fairness computation described earlier does not 
tell us how aggressive or gentle the protocol is, only 
that it is not taking/getting a fair share of the 
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achievable throughput. Hence we introduce the 
following formula, which is the asymmetry between 
two throughputs: 

  
where x1 and x2 are the throughput averages of 
streams 1 and 2 in the cross-traffic.  
 
Table 2 shows the result of the cross-traffic between 
different stacks. A value near one indicates that the 
protocol is too aggressive towards the competing 
protocol. A value near minus one indicates a too 
gentle protocol. The optimal is to have a value near 
0 that indicates that the protocol is fair against the 
other protocols.  
 
Our results show that Bic-TCP, Fast TCP, S-TCP 
and H-TCP have small absolute values of the 
fairness asymmetry. It is normal for HSTCP-LP to 
be too gentle (and have a large negative value of the 
asymmetry) since it uses only the remaining 
bandwidth and is deliberately non-intrusive - thus 
we removed it from our calculation of the average 
asymmetry of the other protocols for the middle-
distance and long-distance. On the short-distance, 
we can see that as expected P-TCP is very 
aggressive - thus, we do not include P-TCP in the 
average asymmetry of the other protocols for the 
short-distance - and that the other advanced TCP 
stacks compete like a single stream of Reno. Only 
Bic-TCP is sufficiently aggressive to compete with 
P-TCP in this case, but it appears too aggressive for 
the other protocols. Our results show that S-TCP, 
which is very aggressive in short-distance, becomes 
quite gentle in the long-distance. On the other hand, 
H-TCP, which is gentle in the short and middle 
distances, becomes aggressive in long-distance. HS-
TCP, as expected, is too gentle in our tests. 

5.3 Reverse-traffic 
Reverse-traffic causes queuing on the reverse path. 
This in turn can result in the ACKs being lost or 
coming back in bursts (compressed ACKs). So, we 
tested the protocols by sending TCP traffic from 
SLAC to UFL using an advanced stack and from 
UFL to SLAC using P-TCP with 16 streams. 
Normally, the router, the path and the Ethernet card 
are full-duplex and should not be affected by the 
reverse-traffic but actually the reverse-traffic affects 
the forward throughputs by its modification of the 
ACK behavior. For example, HS-TCP never 
reaches the limit at which the AIMD behavior 
changes from Reno to HS. Also, our tests show that 
Fast TCP - which is based on TCP Vegas that 

measures RTT - is more heavily affected by heavy 
reverse-traffic that affects (usually increases) the 
reverse path delays and hence the RTTs. The net 
effect is that, for the tested version of Fast TCP, 
throughput is 4 to 8 times less than the other stacks. 

6 10Gbps path tests 
During SuperComputing 20036, we made some 
tentative TCP performance measurements on 
10Gbps links between hosts at the SLAC/FNAL 
booth at the Phoenix convention center and a host at 
the SLAC/Stanford Point of Presence at the Palo 
Alto Internet eXchange (PAIX), a host at StarLight 
in Chicago and a host at NIKHEF in Amsterdam. 
Due to the short amount of time we had access to 
these links (<3 days) and the emphasis on 
demonstrating the maximum throughput for the 
SC03 Bandwidth Challenge, these measurement are 
necessarily incomplete, however some of the results 
are felt to be worth reporting. 

6.1 Setup 
All the hosts at Phoenix and PAIX were Dell 2650s 
with dual Xeon CPUs, a 533MHz front side bus, 
and an Intel PRO/10GbE LR Network Interface 
Card (NIC) plugged into the 133MHz 64 bit PCI-X 
bus slot. There were 3 hosts at the SLAC/FNAL 
booth at SC03, two with 3.06GHz CPUS, and the 
third with 2.04GHz CPUs. The host at PAIX had 
dual Xeon 3.06GHz CPUS, and a 10Gbps Ethernet 
connection (LAN PHY at level 2) to a Cisco GSR 
router in LA. From the GSR router the signal was 
transmitted via an OC192/POS circuit to a Juniper 
640 router managed by SCInet at the Phoenix 
Convention Center. From the Juniper the path went 
via a Force 10 E1200 router to the Cisco 6509 in the 
SLAC/FNAL booth using a 10 Gbps Ethernet link.  
 
The StarLight/Chicago path from the booth went 
from the Cisco 6509 via a second 10 Gbps Ethernet 
link to the Force 10 router and on through a second 
Juniper router connected to the Abeline core at 
10Gbps, and thence via Abilene routers at Los 
Angeles, Sunnyvale, Kansas City, and Indianapolis 
to Chicago. The host at StarLight was an HP 
Integrity rx2600 (64 bit Itanium) system with dual 
1.5GHz CPUs and 4GB RAM.  
 
The Amsterdam path followed the same path to 
StarLight and then had one extra hop over the 
SURFnet 10 Gbps link to Amsterdam. The host at 
Amsterdam was an HP Itanium/F10 at NIKHEF. 

                                                           
6 SC2003: http://www.sc-conference.org/sc2003/  
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6.2 Methodology 
We set up the sending hosts at SC03 with the 
Caltech Fast TCP stack, and the DataTAG altAIMD 
stack [28]. The latter allowed dynamic (without 
reboot) selection of the standard Linux TCP stack 
(New Reno with Fast re-transmit), the Manchester 
University implementation of the High Speed TCP 
(HS-TCP) and the Cambridge University Scalable 
TCP stack (S-TCP). By default we set the 
Maximum Transfer Unit (MTU) to 9000Bytes and 
the transmit queue length (txqueuelen) to 2000 
packets.  
 
We started the first set of measurements at the same 
time as our bandwidth challenge demonstration 
(about 16:00 PST Wednesday 19th November 

2003). The main emphasis at this time was to 
achieve the maximum throughput, the evaluation of 
different TCP stacks was a secondary goal. The 
duration of the tests was about 60 minutes. 
 
We started the second set of measurements just 
before midnight on Wednesday 19th November. 
These measurements were between Phoenix and 
PAIX, Phoenix and Chicago (65ms RTT) and 
Phoenix and Amsterdam (175ms). This was a 
reasonably controlled set of measurements with no 
Bandwidth Challenge in progress and little cross-
traffic. Each test was for 1200 seconds, with a given 
stack, and fixed maximum window size. We 
finished the second set of tests at about 07:00 PST 
Thursday 20th November.

10 Gbits/s throughput from SC2003 to PAIX
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Figure 4:  Points= TCP throughput from the SLAC/FANL booth to PAIX.  
Smooth Curve= total SC2003 traffic on the link to LA, taken from the Juniper router. 
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Figure 5:  Points= TCP throughput from the SLAC/FANL booth to Amsterdam and Chicago.  
Smooth Curve= total SC2003 traffic on the Abilene access link, taken from the Juniper router. 
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6.2.1 Tests made during the 
Bandwidth Challenge 

During the Bandwidth Challenge, TCP flows were 
set up from the SLAC/FANL booth to PAIX, 
Chicago and Amsterdam. They were generated 
using iperf with an MTU of 9000 bytes and TCP 
window sizes of 30, 60 and 200 Mbytes 
respectively. Separate Dell machines at the booth, 
running the DataTAG altAIMD stack, were used for 
the flow to each remote location. Following other 
work on PCI-X transactions [27], the PCI-X  
parameter “maximum memory read byte count” , 
mmrbc, was set to 4096 bytes on both local are 
remote machines. Setting mmrbc to the maximum 
4096 bytes minimized the time taken for the packets 
to cross the PCI-X bus and thus increased 
throughput. 
 
The flow to PAIX shared the SC2003-LA link with 
traffic from the Caltech booth to nodes at LA. The 
flows to Amsterdam and Chicago shared the 10 
Gbps Ethernet link to the SCInet Force10 switch 
and then shared the Abilene access link with other ~ 
1-2Gigabit traffic Bandwidth Challenge flows to US 
sites.  
 
The points in Figure 4 show the TCP user level 
throughput (goodput) to the remote node in PAIX 
and the solid line shows the total traffic from 
SC2003 on the link to LA, taken from the link level 
counters on the Juniper router. The first transfer 
(16:00 – 16:40) used HS-TCP and initially the 
observed throughput was 4.37 Gbps and extremely 
stable, giving a Stability Index (standard deviation / 
average throughput) of 0.5 %. After 16:12 the 
throughput dropped to .2.87 Gbps with considerable 
variation, giving a Stability Index of 16%. This 
could be due to the increase of the total traffic on 
the link (~7.5 Gbps upwards). The dramatic drop at 
16:32 coincides with the link reaching its 10 Gbps 
capacity. The red points from 16:42 to 17:18 show 
the throughput using scalable TCP, S-TCP. Initially 
the throughput was 3.3 Gbps with a Stability Index 
of 8% , similar or slightly better than HS-TCP given 
the load on the LA link. Between 17:08 and 17:18 a 
second S-TCP flow was started between the same 
end hosts. The average of each flow drops to ~1.0 
Gbps and the Stability Index increases to 56%. The 
sum of the two S-TCP flows was ~1.9 Gbps with a 
Stability Index of 39%.The combined rate was less 
than that for 1 f low which could be due to the extra 
processing required for two flows. 
 
In comparison, Figure 5 shows the TCP user level 
throughput to Chicago is quite steady at 3.1 Gbps 

with a Stability Index of 1.6%. while to Amsterdam 
the throughput is greater at ~4.35 Gbps but less 
stable with a Stability Index of 6.9%.The solid line 
in Figure 5 shows the total link level traffic from 
SC2003 on the Abilene access link, which is about 
1Gbps more than the total of the Amsterdam and 
Chicago traffic. It is worth noting that the host 
providing the flow to Chicago had 2.04GHz CPUs, 
while that to Amsterdam had 3.06GHz CPUs, this 
may account for the lower throughput recorded. 

6.2.2 Tests to PAIX (17ms RTT) 
On the Phoenix to PAIX link we used maximum 
window sizes of 8MBytes, 16MBytes and 
32MBytes7. This bracketed the nominal optimum 
window size calculated from the BDP of 17ms * 
10Gbps ~ 20MBytes. For the PAIX link, all the 
tests were made with a single TCP stream. For 
Reno, HS-TCP and S-TCP there was little 
observable differences between the four stacks in 
the achievable bandwidth behavior. 
 

• For an MTU of 9000Bytes, a window size 
of 8MBytes was inadequate and resulted in 
throughput being limited to about 2.9Gbps 
for Reno single stream, HS-TCP and S-
TCP 

• For an MTU of 9000Bytes with window 
sizes of 16MBytes or 32MBytes for Reno 
single stream, HS-TCP and S-TCP the 
throughput increased to about 4.3Gbps. 

• The throughputs with an MTU of 
9000Bytes were very stable. Typical 
values of the Stability Index were < 0.4%. 
The larger values for Reno with a single 
stream and an 8MByte window and HS-
TCP with a 16MByte window were each 
caused by a single sudden drop of 
throughput for one 5 second period. 

• Reducing the MTU from 9000Bytes to 
1500Bytes reduced the throughput for a 
16MByte window from 4.3Gbps to about 
700Mbps, and for an 8MByte window 
from 2.9Gbps to ~ 360Mbps. Also the 
throughputs were less stable with the 
1500Byte MTU (Stability Index > 10%). 

• With an MTU of only 1500Bytes, Fast 
TCP gave similar performance to HS-TCP 
and STCP when they ran with 1500Byte 
MTUs.  

                                                           
7 More explanations are available on: http: 
//www-iepm.slac.stanford.edu/monitoring/bulk/ 
sc2003/hiperf.html and http://www-iepm.slac. 
stanford.edu/monitoring/bulk/sc2003/stack-cf.html 
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The 4.3Gbps limit was slightly less than the ~ 
5.0Gbps achieved with UDP transfers in the lab at 
SLAC between back to back 3.06GHz Dell 
PowerEdge 2650 hosts. On the other hand it is less 
than that calculated from the expected data transfer 
rate for a 10GE NIC with a 64 bit 133 MHz PCI-X 
bus[27]. The limitation in throughput is believed to 
be due to CPU factors (CPU speed, memory/bus 
speed or the I/O chipset). The relative decrease in 
throughput going from 9000ByteMTU to a 
1500ByteMTU was roughly proportional to the 
reduction in MTU size. This maybe related to the 
extra CPU power / memory bandwidth required to 
process the 6 times as many, but 6 times as small 
MTUs. Back to back UDP transfers in the lab at 
SLAC between 3.06GHz Dell PowerEdge 2650 
hosts achieved about 1.5Gbps or about twice the 
700Mbps achieved with the SC03 long distance 
TCP transfers. Further work is required to 
understand this discrepancy. 

7 Future experiments 
In the near future, we plan on repeating the tests on 
higher speed networks, in particular on the 
emerging 10Gbps testbeds. We also plan to test 
other promising TCP stacks such as Westwood+, 
and rate based protocols such as RBUDP, SABUL 
and UDT, and compare their performances with the 
TCP based protocols. Also we are planning to work 
with others to compare our real network results with 
those from simulators such as ns-28

 or emulators 
such as Dummynet [23].  
 
In the future, we would like to test a similar 
topology as described in [12] where the authors 
indicate that it may be beneficial for long RTT 
connections to become slightly more aggressive 
during the additive increase phase of congestion 
avoidance. In this paper we only made cross-traffic 
tests with two protocols having the same RTT. It 
means that all the senders’  servers were at the same 
place. It was the same for the receiver. Thus, we 
have to check how each protocol behaves with 
different RTTs on the same link. The increase 
between the different protocols on the path will be 
different and it may affect the fairness.  
 
We should also test the different protocols with 
more than one stream to see how aggressive or 
gentle a protocol is on this case. Finally, we plan to 
test other promising TCP stacks and rate based 

                                                           
8 ”The Network Simulator - ns-2”, available at http:// 
www.isi.edu/nsnam/ns/  

protocol and compare their performance with the 
TCP based protocols.  

8 Conclusion 
In this paper we presented the results of a two-
month experiment to measure the performance of 7 
TCPs from SLAC over various network paths. If we 
compare the various TCPs for the more important 
metrics (throughput achievable, impact on RTT, 
aggressiveness, stability and convergence) we 
observe for the set of measurements: 
 

• The differences in the performances of the 
TCP stacks is more noticeable for the 
longer distances. 

• TCP Reno single stream, as expected, is 
low performance and unstable on longer 
distances. 

• P-TCP is too aggressive. It is also very 
unfair with the RTT on short distance. 

• HSTCP-LP is too gentle and, by design, 
backs-off. too quickly otherwise it 
performs well. It looks very promising to 
use to get Less than Best Effort (LBE) 
service without requiring network 
modifications. 

• Fast TCP performs as well as most others 
but it is very handicapped by the reverse 
traffic. 

• S-TCP is very aggressive on middle-
distance and becomes unstable with UDP 
traffic on long distance but achieves high 
throughput. 

• HS-TCP is very gentle and has some 
strange intra-fairness behavior. 

• Bic-TCP overall performs very well in our 
tests.  

 
It is also very important to choose a TCP stack that 
works well with and will not decrease the 
performance and efficiency of TCP Reno used all 
around the world. Moreover, we will always prefer 
an advanced TCP which has the recommendation of 
the IETF and which will be used by everybody.  
 
Finally, it must be borne in mind that the transport 
needs can be very different whether you transfer a 
huge amount of data during several minutes or you 
need the connection for a one-hour video 
conference, or just want to surf the web. 
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